Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Chemosensors ; 11(2):149, 2023.
Article in English | ProQuest Central | ID: covidwho-2267936

ABSTRACT

Conventional enzyme-based continuous glucose sensors in interstitial fluid usually rely on dissolved oxygen as the electron-transfer mediator to bring electrons from oxidase to electrode while generating hydrogen peroxide. This may lead to several problems. First, the sensor may provide biased detection results owing to fluctuation of oxygen in interstitial fluid. Second, the polymer coatings that regulate the glucose/oxygen ratio can affect the dynamic response of the sensor. Third, the glucose oxidation reaction continuously produces corrosive hydrogen peroxide, which may compromise the long-term stability of the sensor. Here, we introduce an oxygen-independent nonenzymatic glucose sensor based on water splitting-assisted electrocatalysis for continuous glucose monitoring. For the water splitting reaction (i.e., hydrogen evolution reaction), a negative pretreatment potential is applied to produce a localized alkaline condition at the surface of the working electrode for subsequent nonenzymatic electrocatalytic oxidation of glucose. The reaction process does not require the participation of oxygen;therefore, the problems caused by oxygen can be avoided. The nonenzymatic sensor exhibits acceptable sensitivity, reliability, and biocompatibility for continuous glucose monitoring in hypoxic environments, as shown by the in vitro and in vivo measurements. Therefore, we believe that it is a promising technique for continuous glucose monitoring, especially for clinically hypoxic patients.

2.
J Med Virol ; 93(12): 6641-6652, 2021 12.
Article in English | MEDLINE | ID: covidwho-1544314

ABSTRACT

Acute kidney injury (AKI) may develop in patients with coronavirus disease 2019 (COVID-19) and is associated with in-hospital death. We investigated the incidence of AKI in 223 hospitalized COVID-19 patients and analyzed the influence factors of AKI. The incidence of cytokine storm syndrome and its correlation with other clinicopathologic variables were also investigated. We retrospectively enrolled adult patients with virologically confirmed COVID-19 who were hospitalized at three hospitals in Wuhan and Guizhou, China between February 13, 2020, and April 8, 2020. We included 124 patients with moderate COVID-19 and 99 with severe COVID-19. AKI was present in 35 (15.7%) patients. The incidence of AKI was 30.3% for severe COVID-19 and 4.0% for moderate COVID-19 (p < 0.001). Furthermore, cytokine storm was found in 30 (13.5%) patients and only found in the severe group. Kidney injury at admission (odds ratio [OR]: 3.132, 95% confidence interval [CI]: 1.150-8.527; p = 0.025), cytokine storm (OR: 4.234, 95% CI: 1.361-13.171; p = 0.013), and acute respiratory distress syndrome (ARDS) (OR: 7.684, 95% CI: 2.622-22.523; p < 0.001) were influence factors of AKI. Seventeen (48.6%) patients who received invasive mechanical ventilation developed AKI, of whom 64.7% (11/17) died. Up to 86.7% of AKI patients with cytokine storms may develop a secondary bacterial infection. The leukocyte counts were significantly higher in AKI patients with cytokine storm than in those without (13.0 × 109/L, interquartile range [IQR] 11.3 vs. 8.3 × 109/L, IQR 7.5, p = 0.005). Approximately 1/6 patients with COVID-19 eventually develop AKI. Kidney injury at admission, cytokine storm and ARDS are influence factors of AKI. Cytokine storm and secondary bacterial infections may be responsible for AKI development in COVID-19 patients.


Subject(s)
Acute Kidney Injury/etiology , Bacterial Infections/etiology , COVID-19/complications , Cytokine Release Syndrome/complications , Adult , Aged , China , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Middle Aged , Respiration, Artificial/adverse effects , Respiration, Artificial/statistics & numerical data , Respiratory Distress Syndrome/complications , Respiratory Distress Syndrome/etiology , Retrospective Studies , Risk Factors
3.
Front Cell Dev Biol ; 8: 410, 2020.
Article in English | MEDLINE | ID: covidwho-612660

ABSTRACT

Since the first reports that the novel coronavirus was showing human-to-human transmission characteristics and asymptomatic cases, the number of patients with associated pneumonia has continued to rise and the epidemic has grown. It now threatens the health and lives of people across the world. The governments of many countries have attached great importance to the prevention of SARS-CoV-2, via research into the etiology and epidemiology of this newly emerged disease. Clinical signs, treatment, and prevention characteristics of the novel coronavirus pneumonia have been receiving attention worldwide, especially from medical personnel. However, owing to the different experimental methods, sample sizes, sample sources, and research perspectives of various studies, results have been inconsistent, or relate to an isolated aspect of the virus or the disease it causes. Currently, systematic summary data on the novel coronavirus are limited. This review combines experimental and clinical evidence into a systematic analysis and summary of the current progress of research into SARS-CoV-2, from multiple perspectives, with the aim of gaining a better overall understanding of the disease. Our report provides important information for current clinicians, for the prevention and treatment of COVID-19 pneumonia.

4.
J Integr Med ; 18(3): 229-241, 2020 05.
Article in English | MEDLINE | ID: covidwho-97719

ABSTRACT

OBJECTIVE: Lung-toxin Dispelling Formula No. 1, referred to as Respiratory Detox Shot (RDS), was developed based on a classical prescription of traditional Chinese medicine (TCM) and the theoretical understanding of herbal properties within TCM. Therapeutic benefits of using RDS for both disease control and prevention, in the effort to contain the coronavirus disease 2019 (COVID-19), have been shown. However, the biochemically active constituents of RDS and their mechanisms of action are still unclear. The goal of the present study is to clarify the material foundation and action mechanism of RDS. METHODS: To conduct an analysis of RDS, an integrative analytical platform was constructed, including target prediction, protein-protein interaction (PPI) network, and cluster analysis; further, the hub genes involved in the disease-related pathways were identified, and the their corresponding compounds were used for in vitro validation of molecular docking predictions. The presence of these validated compounds was also measured in samples of the RDS formula to quantify the abundance of the biochemically active constituents. In our network pharmacological study, a total of 26 bioinformatic programs and databases were used, and six networks, covering the entire Zang-fu viscera, were constructed to comprehensively analyze the intricate connections among the compounds-targets-disease pathways-meridians of RDS. RESULTS: For all 1071 known chemical constituents of the nine ingredients in RDS, identified from established TCM databases, 157 passed drug-likeness screening and led to 339 predicted targets in the constituent-target network. Forty-two hub genes with core regulatory effects were extracted from the PPI network, and 134 compounds and 29 crucial disease pathways were implicated in the target-constituent-disease network. Twelve disease pathways attributed to the Lung-Large Intestine meridians, with six and five attributed to the Kidney-Urinary Bladder and Stomach-Spleen meridians, respectively. One-hundred and eighteen candidate constituents showed a high binding affinity with SARS-coronavirus-2 3-chymotrypsin-like protease (3CLpro), as indicated by molecular docking using computational pattern recognition. The in vitro activity of 22 chemical constituents of RDS was validated using the 3CLpro inhibition assay. Finally, using liquid chromatography mass spectrometry in data-independent analysis mode, the presence of seven out of these 22 constituents was confirmed and validated in an aqueous decoction of RDS, using reference standards in both non-targeted and targeted approaches. CONCLUSION: RDS acts primarily in the Lung-Large Intestine, Kidney-Urinary Bladder and Stomach-Spleen meridians, with other Zang-fu viscera strategically covered by all nine ingredients. In the context of TCM meridian theory, the multiple components and targets of RDS contribute to RDS's dual effects of health-strengthening and pathogen-eliminating. This results in general therapeutic effects for early COVID-19 control and prevention.


Subject(s)
Antiviral Agents/chemistry , Betacoronavirus/chemistry , Coronavirus Infections/drug therapy , Drugs, Chinese Herbal/chemistry , Medicine, Chinese Traditional , Molecular Docking Simulation , Pneumonia, Viral/drug therapy , Antiviral Agents/therapeutic use , Betacoronavirus/enzymology , COVID-19 , Coronavirus 3C Proteases , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Cysteine Endopeptidases/chemistry , Drugs, Chinese Herbal/therapeutic use , Humans , Mass Spectrometry , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , Protein Interaction Maps , SARS-CoV-2 , Viral Nonstructural Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL